Astyanax_mexicanusFamily: A_deamin Number of Genes: 7
Ensembl IDSymbolEntrez IDRBD RBPome PRIExpresion PathwayPhenotype ParalogOrthologGO
adad2
adarb1a
adad1
adar
adarb1b
adarb2
adat1

Introduction

Pfam

Adenosine deaminases acting on RNA (ADARs) can deaminate adenosine to form inosine. In long double-stranded RNA, this process is non-specific; it occurs site-specifically in RNA transcripts. The former is important in defence against viruses, whereas the latter may affect splicing or untranslated regions. They are primarily nuclear proteins, but a longer isoform of ADAR1 is found predominantly in the cytoplasm. ADARs are derived from the Tad1-like tRNA deaminases that are present across eukaryotes. These in turn belong to the nucleotide/nucleic acid deaminase superfamily and are characterized by a distinct insert between the two conserved cysteines that are involved in binding zinc [2].

InterPro

Editase (EC) are enzymes that alter mRNA by catalyzing the site-selective deamination of adenosine residue into inosine residue. The editase domain contains the active site and binds three Zn atoms [PUBMED:9159072].

Reference

  1. Keegan LP, Leroy A, Sproul D, O'Connell MA; , Genome Biol 2004;5:209.: Adenosine deaminases acting on RNA (ADARs): RNA-editing enzymes. PUBMED:14759252 EPMC:14759252 .

  2. Iyer LM, Zhang D, Rogozin IB, Aravind L;, Nucleic Acids Res. 2011; [Epub ahead of print]: Evolution of the deaminase fold and multiple origins of eukaryotic editing and mutagenic nucleic acid deaminases from bacterial toxin systems. PUBMED:21890906 EPMC:21890906.