Microtus_ochrogasterFamily: SRP14 Number of Genes: 1
Ensembl IDSymbolEntrez IDRBD RBPome PRIExpresion PathwayPhenotype ParalogOrthologGO
Srp14

Introduction

Pfam

The signal recognition particle (SRP) is a multimeric protein involved in targeting secretory proteins to the rough endoplasmic reticulum membrane. SRP14 and SRP9 form a complex essential for SRP RNA binding.

InterPro

The signal recognition particle (SRP) is a multimeric protein, which along with its conjugate receptor (SR), is involved in targeting secretory proteins to the rough endoplasmic reticulum (RER) membrane in eukaryotes, or to the plasma membrane in prokaryotes [PUBMED:17622352, PUBMED:16469117]. SRP recognises the signal sequence of the nascent polypeptide on the ribosome. In eukaryotes this retards its elongation until SRP docks the ribosome-polypeptide complex to the RER membrane via the SR receptor [PUBMED:12605305]. Eukaryotic SRP consists of six polypeptides (SRP9, SRP14, SRP19, SRP54, SRP68 and SRP72) and a single 300 nucleotide 7S RNA molecule. The RNA component catalyses the interaction of SRP with its SR receptor [PUBMED:17507650]. In higher eukaryotes, the SRP complex consists of the Alu domain and the S domain linked by the SRP RNA. The Alu domain consists of a heterodimer of SRP9 and SRP14 bound to the 5' and 3' terminal sequences of SRP RNA. This domain is necessary for retarding the elongation of the nascent polypeptide chain, which gives SRP time to dock the ribosome-polypeptide complex to the RER membrane. In archaea, the SRP complex contains 7S RNA like its eukaryotic counterpart, yet only includes two of the six protein subunits found in the eukarytic complex: SRP19 and SRP54 [PUBMED:12364595].

Reference

  1. Birse DE, Kapp U, Strub K, Cusack S, Aberg A; , EMBO J 1997;16:3757-3766.: The crystal structure of the signal recognition particle Alu RNA binding heterodimer, SRP9/14. PUBMED:9233785 EPMC:9233785.